Mitigating Soil Compaction in Newly Developed Residential Landscapes

March 14, 2018

Eban Bean¹, Allan Bacon², & Victoria Steinnecker³

¹Assistant Professor & Extension Specialist, Agricultural & Biological Engineering

²Assistant Professor, Soil & Water Sciences

³Undergraduate Research Assistant, Agricultural & Biological Engineering
Hillshade model from soilexplorer.net
Landscape Traffic

Home Building Process: 90-120 Days to construct a home

90-120 days of:

- Heavy vehicle traffic
- Wetting and Drying
- Vehicle vibration
Soil Compaction
Compaction Mitigation Study

5,000 homes -> Buildout of 30,000 homes
Active Adult Community – Marion, CO.

Average: 250 gal./home/day
OTOW: 190 g/h/d (CUP: 150 g/h/d)

January 2017 – January 2019 (Beyond?)
Treatments

9 Model Homes
- 3 compacted
- 3 tilled (5-6 in.)
- 3 tilled compost into soil
 \[4 \text{ yd}^3/1000 \text{ ft}^2\]
 \((1 \text{ in. into } 6 \text{ in.})\)

Just before sod laid

<table>
<thead>
<tr>
<th>Depth (in.)</th>
<th>Treatment</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>Compact</td>
<td>Till</td>
</tr>
<tr>
<td>6-12</td>
<td>Compact</td>
<td>Compact</td>
</tr>
</tbody>
</table>
Soil Profile Development
Bulk Density

Bulk Density (g/cc) | 0-15 cm

Bulk Density (g/cc) | 15-30 cm

- Compost+Till
- Control
- Till
Soil Water Release Curves

- Null
- Till
- Compost

Volumetric Water Content, θ

Matric Pressure (Bar)
Turf Quality – September 17, 2017

Compacted

Tilled

Tilled w Compost
Chronosequence: Bulk Density

LAWNS

BEDS
Bigger Picture

Phase I – 9 model homes

Phase II – Plots on UF Campus
 Stress Turfgrass

Phase III – 28 Homeowners in OToW
 Water Savings, WQ, and Top Dressing

Chronosequence – 50 homes in OToW
Acknowledgements

UF Collaborators:

Jason Kruse, Env. Hort.
Adam Dale, Entomology
Sunny Liao, Soil & Water Sciences
Basil Iannone, SFRC
AJ Reisinger, Soil & Water Sciences
Lloyd Singleton, IFAS Extension
Mary Lusk, IFAS Water RSA
Pierce Jones, IFAS PREC
Jim Fletcher, IFAS Water RSA

Funding

FNGLA Endowed Research Fund
FTGA
Southwest Florida WMD

Partners

Phillip Hisey, OToW
Ryan McMeekin, LifeSoils
Darren Midlane, HarvestQuest
Bryan Schmalz, Bay Laurel Water Utility
David Gruber, Earthscapes Unlimited
Questions?

Eban Z. Bean, Ph.D., P.E.
Assistant Professor & Extension Specialist
Urban Water Resources Engineering

ezbean@ufl.edu

EbanBean
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth to Refusal</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Weather Station

Forecast for Ocala, FL: 29.094N -82.288W > 72 ft

Current Conditions: Station reported 2 seconds ago

61.3°F
Feels Like 61.3°F

Dew Point: 60°F
Humidity: 97%
Precip Rate: 0 in/hr
Precip Accum: 0.00 in
Pressure: 30.23 in

Wind: ESE 0.0 mph
Gusts: 0.0 mph

UV: 0.0
Solar: 16 W/m²
Soil Moisture: --
Soil Temp: --
Leaf Wetness: --

7:14 AM 6:12 PM

View WunderMap
Irma’s Influence on Gainesville’s 2017 Precipitation Saga

Accumulated Precipitation – Gainesville Area, FL (ThreadEx)

- After Irma (Sept 11th): 64.08”
- Record Dry Start (May 23rd): 7.68”
- #2 all time: 1953: 73.30”

Hurricane Irma Facts
- Two day total = 12.40 inches
- Two daily records (previous Dora records):
 - 9/10 = 6.63 (4.69) inches
 - 9/11 = 5.77 (1.69) inches
- Two day rainfall record as well!

Record Facts
- 7.68 in (May 23rd) to 64.08 in (Sept 11)
- 111 day total = 56.40 inches
- Equivalent to seeing at least 0.51 inches of rain per day for 111 days
- Wettest year? 1953 with 73.30 inches
Volumetric Water Content, θ

8/1 8/6 8/11 8/16 8/21 8/26 8/31
M/D/2017

3 N 4 T 5 C
7 N 15 T 16 C
13 N 12 T 14 C
Infiltration Rates

- Constant Head Double Ring Infiltrometer Method (ASTM D3385)
- Conducted during April and May

<table>
<thead>
<tr>
<th></th>
<th>Compacted (Null) in./h</th>
<th>Tilled in./h</th>
<th>Till & Compost in./h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 3</td>
<td>0.15</td>
<td>Lot 4</td>
<td>1.50</td>
</tr>
<tr>
<td>Lot 13</td>
<td>0.09</td>
<td>Lot 12</td>
<td>0.25</td>
</tr>
<tr>
<td>Lot 7</td>
<td>< 0.04</td>
<td>Lot 15</td>
<td>< 0.06</td>
</tr>
<tr>
<td>Lot 5</td>
<td></td>
<td>Lot 14</td>
<td>0.08</td>
</tr>
<tr>
<td>Lot 6</td>
<td></td>
<td>Lot 16</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Landscape Development Process

Master Grading Plan
Make me a landscape/lawn!
Soil Compaction

‘Ideal Soil’ (50% solid, 25% air, 25% water)

Compacted Soil

Soil Solid

Water

Air
Cone Penetrometer Measurements

Measures Pressure for Cone Penetrating Soil Profile

Maximum Pressure is 7,000+ kPa
(~200 lbs. over cone area)

Maximum Depth: 45 cm (18 in.)

Profiles collected
Baseline & Post-Treatment
Soil Compaction Profiles

- X-axis: Depth, in.
- Y-axis: Compaction, kPa

The graph shows the compaction profiles at different depths, with each line representing a different sample or condition.
Cone Penetrometer Profiles
Post-Treatments

Lot 3-N
Lot 13-N
Lot 7-N
Lot 4-T
Lot 12-T
Lot 5-C
Lot 14-C
Lot 16-C
<table>
<thead>
<tr>
<th>Undeveloped</th>
<th>New Yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth to Refusal (cm)</td>
<td>>120</td>
</tr>
<tr>
<td>Bulk Density (g/cc)</td>
<td>1.23</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>51</td>
</tr>
<tr>
<td>Organic Matter (%)</td>
<td>1.7</td>
</tr>
<tr>
<td>pH</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
</tr>
</tbody>
</table>

Data from Kayci Kowalski

![Effects of soil pH on nutrient availability](chart.png)
On Top of the World

- Can compaction mitigation improve water availability for turfgrass?

- Monitoring/Sampling:
 - Soil Moisture
 - On-site Weathers Station
 - High Frequency Water Use
 - Soils Properties
 - Turfgrass Biomass
 - ‘Green-ness’